金乡县大蒜产区土壤重金属特征及潜在生态风险评价

薄录吉, 李冰, 张荣全, 李亚平, 李彦, 段刚, 高新昊

薄录吉, 李 冰, 张荣全, 李亚平, 李 彦, 段 刚, 高新昊. 金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J]. 土壤通报, 2021, 52(2): 434 − 442. DOI: 10.19336/j.cnki.trtb.2020061601
引用本文: 薄录吉, 李 冰, 张荣全, 李亚平, 李 彦, 段 刚, 高新昊. 金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J]. 土壤通报, 2021, 52(2): 434 − 442. DOI: 10.19336/j.cnki.trtb.2020061601
BO Lu-ji, LI Bing, ZHANG Rong-quan, LI Ya-ping, LI Yan, DUAN Gang, GAO Xin-hao. Characteristics and Potential Ecological Risk Assessment of Heavy Metals in Garlic Producing Areas of Jinxiang[J]. Chinese Journal of Soil Science, 2021, 52(2): 434 − 442. DOI: 10.19336/j.cnki.trtb.2020061601
Citation: BO Lu-ji, LI Bing, ZHANG Rong-quan, LI Ya-ping, LI Yan, DUAN Gang, GAO Xin-hao. Characteristics and Potential Ecological Risk Assessment of Heavy Metals in Garlic Producing Areas of Jinxiang[J]. Chinese Journal of Soil Science, 2021, 52(2): 434 − 442. DOI: 10.19336/j.cnki.trtb.2020061601

金乡县大蒜产区土壤重金属特征及潜在生态风险评价

基金项目: 山东省农业科学院农业科技创新工程项目(CXGC2019E03/CXGC2016B09)、山东省技术创新引导计划与国家重点研发计划(2018YFD0800406)、山东省重大科技创新工程(2019JZZY010701-2)、山东省大科学计划(2018-001)和泰山产业领军人才项目资助
详细信息
    作者简介:

    薄录吉(1985−),男,博士,从事农业面源污染防控方面的研究。Email: boluji@126.com

    通讯作者:

    高新昊: Email: nkygxh@163.com

  • 中图分类号: X820.4

Characteristics and Potential Ecological Risk Assessment of Heavy Metals in Garlic Producing Areas of Jinxiang

  • 摘要: 应用地积累指数、潜在生态风险指数、健康风险指数法和因子分析法对金乡县典型大蒜产区土壤重金属(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)特征、污染源头及其潜在生态风险进行了评价分析。结果表明:该县大蒜产区土壤重金属As、Cd、Cr、Cu、Hg、Ni、Pb和Zn的平均含量分别为16.27、0.18、63.05、32.79、0.15、32.05、20.71和80.47 mg kg−1,未超过《食用农产品产地环境质量评价标准》(HJ 332—2006)规定的上限值,即多数点位土壤重金属含量处于清洁水平。土壤重金属潜在生态风险低,且没有显著的人体健康风险。土壤中的Cd、Cr、Cu、Pb和Zn可能主要来自施肥、施药和灌溉等农业生产活动,As和Hg可能来自当地煤炭生产等工业活动产生的大气沉降。总体而言,从重金属含量角度评价,该地区土壤质量处于清洁水平,建议今后继续加强大蒜产地投入品的监管和当地煤炭生产及相关工业活动的脱尘处理,以保障大蒜产区土壤具有绿色可持续的生产能力。

     

    Abstract: To characterize the soil pollution, pollution source and potential ecological risk from heavy metals in the garlic producing area in Jinxiang, eight heavy metals were analyzed and evaluated by using geoaccumulation index, pollution index, potential ecological risk index, health risk index and factor analysis method. The results showed that the average concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn did not exceed the specified value prescribed by “Environmental Quality Standards for the Origin of Edible Agricultural Products”, indicating that heavy metals were at clean levels at most sites. The potential ecological risk of Cu, Hg, As, Ni, Pb, Cr, Zn is low in soil in eight heavy metals, and there is no considerable non-carcinogenic or carcinogenic risks for children and adults from these elements. Cd, Cr, Cu, Pb, and Zn may mainly come from agricultural activities such as fertilization, pesticide application, and irrigation. As and Hg may come from atmospheric subsidence generated by local coal production activities. In all, the soil quality in this area is at a clean level. The supervision of inputs such as fertilizers, pesticides, irrigation water and the dust removal of local coal production and related industrial activities should be strengthened in the future to ensure the green and sustainable production capacity of soil in the garlic production area.

     

  • 图  1   研究区域及采样点示意图

    Figure  1.   Location of soil sampling sites in the study area

    图  2   大蒜产区土壤重金属地积累指数

    Figure  2.   Geoaccumulation index of soil heavy metals in garlic producing areas

    图  3   大蒜产区土壤重金属污染指数

    Figure  3.   Pollution index of soil heavy metals in garlic producing areas

    图  4   大蒜产区土壤重金属潜在生态风险指数

    Figure  4.   Potential ecological risk index of soil heavy metals in garlic producing areas

    图  5   旋转因子空间成分图

    Figure  5.   Component plot in rotated space

    表  1   土壤重金属健康风险评价相关参数

    Table  1   The parameter of health risk assessment for soil heavy metals

    参数
    Parameters
    单位
    Units
    数值(成人,儿童)
    Data(Adults,Child)
    重金属实测浓度/Ci mg kg−1
    经手-口摄入频率/IngR mg d−1 100 200
    呼吸频率/InhR m3 d−1 14.5 7.5
    暴露频率/EF d a−1 350 350
    平均体重/BW kg 56.8 15.9
    暴露年限/ED a 30 6
    平均暴露时间/AT d 10950 2190
    灰尘排放因子/PEF m3 kg−1 1.36 × 109 1.36 × 109
    暴露皮肤面积/SA cm2 5700 2800
    皮肤表面土壤粘附系数/AF mg cm−2 0.2 0.2
    皮肤接触吸收效率因子/ABS 无量纲 0.001 0.001
    下载: 导出CSV

    表  2   重金属不同暴露途径的参考剂量(RfD)和斜率因子(SF)

    Table  2   References dose(RfD)for non-carcinogen metals and slope factors(SF)for carcinogen metals

    重金属
    Metals
    参考剂量(mg(kg d)−1
    RfD
    斜率因子((kg d)mg−1
    SF
    手口摄入
    Ingestion
    呼吸吸入
    Inhalation
    皮肤接触
    Dermal
    手口摄入
    Ingestion
    呼吸吸入
    Inhalation
    皮肤接触
    Dermal
    As 3.00 × 10−4 1.23 × 10−4 1.23 × 10−4 1.50 × 100 1.51 × 101 1.50 × 100
    Cd 1.00 × 10−3 1.00 × 10−5 1.00 × 10−5 6.10 × 100 6.30 × 100
    Cr 3.00 × 10−3 2.86 × 10−5 6.00 × 10−5 4.20 × 101
    Cu 4.00 × 10−2 4.02 × 10−2 1.20 × 10−2
    Hg 3.00 × 10−4 8.57 × 10−5 2.10 × 10−5
    Ni 2.00 × 10−2 2.06 × 10−3 5.40 × 10−3 8.40 × 10−1
    Pb 3.50 × 10−4 3.52 × 10−3 5.25 × 10−5 4.20 × 10−2
    Zn 3.00 × 10−1 3.00 × 10−1 6.00 × 10−2
      注:−表示没有相关数据,RfD和SF数据来自文献[1720-21].
    下载: 导出CSV

    表  3   大蒜产区土壤重金属含量及相关标准

    Table  3   Contents of soil heavy metals and related standards in garlic producing areas

    AsCdCrCuHgNiPbZn
    平均值(mg kg−1 16.27 0.18 63.05 32.79 0.15 32.05 20.74 80.47
    最小值(mg kg−1 10.30 0.11 49.08 19.27 0.05 22.60 14.47 52.18
    最大值(mg kg−1 21.20 0.26 86.34 45.30 0.33 56.53 30.11 103.52
    中位数(mg kg−1 16.72 0.19 63.12 33.70 0.16 30.17 20.42 80.35
    标准差(mg kg−1 2.73 0.04 9.36 6.50 0.08 8.33 3.99 13.59
    变异系数(%) 16.76 24.37 14.85 19.81 49.42 25.99 19.23 16.89
    土壤背景值a(mg kg−1 12.9 0.091 53.6 21.4 0.022 24.9 14.4 65.1
    HJ332-2006b(mg kg−1 20 0.4 250 100 0.35 60 50 300
    GB15618-2018c(mg kg−1 25 0.6 250 100 3.4 190 170 300
      注:a为山东省潮土重金属背景值[12],b为食用农产品产地环境质量评价标准(HJ 332—2006)[15],c为土壤环境质量 农用地土壤污染风险管控标准(试行)(GB 15618—2018)。
    下载: 导出CSV

    表  4   重金属非致癌风险指数统计

    Table  4   Statistics analysis for non-carcinogenic risk index of heavy metals

    手口摄入非致癌风险商
    HQingest
    呼吸吸入非致癌风险商
    HQinhale
    皮肤接触非致癌风险商
    HQdermal
    总非致癌风险商
    HQ
    非致癌风险指数
    HI
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    As 最小值 5.80 × 10−2 2.21 × 10−1 1.51 × 10−5 2.79 × 10−5 1.53 × 10−3 2.83 × 10−3 5.95 × 10−2 4.30 × 10−1 0.17 0.82
    最大值 1.19 × 10−1 8.52 × 10−1 3.10 × 10−5 5.73 × 10−5 3.14 × 10−3 5.82 × 10−3 1.22 × 10−1 8.58 × 10−1
    均值  9.16 × 10−2 4.12 × 10−1 2.38 × 10−5 4.40 × 10−5 2.41 × 10−3 4.47 × 10−3 9.40 × 10−2 6.59 × 10−1
    Cd 最小值 1.92 × 10−4 1.37 × 10−3 2.04 × 10−6 3.78 × 10−6 2.19 × 10−4 3.83 × 10−4 4.12 × 10−4 1.87 × 10−3
    最大值 4.39 × 10−4 3.14 × 10−3 4.68 × 10−6 8.65 × 10−6 5.00 × 10−4 8.78 × 10−4 9.44 × 10−4 4.02 × 10−3
    均值  3.10 × 10−4 2.22 × 10−3 3.31 × 10−6 6.11 × 10−6 3.54 × 10−4 6.21 × 10−4 6.67 × 10−4 2.84 × 10−3
    Cr 最小值 2.76 × 10−2 1.97 × 10−1 3.09 × 10−4 5.71 × 10−4 1.57 × 10−2 2.76 × 10−2 4.37 × 10−2 3.18 × 10−1
    最大值 4.86 × 10−2 3.47 × 10−1 5.43 × 10−4 1.00 × 10−3 2.77 × 10−2 4.86 × 10−2 7.68 × 10−2 3.97 × 10−1
    均值  3.55 × 10−2 2.54 × 10−1 3.97 × 10−4 7.33 × 10−4 2.02 × 10−2 3.55 × 10−2 5.61 × 10−2 2.90 × 10−1
    Cu 最小值 8.13 × 10−4 5.81 × 10−3 8.63 × 10−8 1.59 × 10−7 3.09 × 10−5 5.42 × 10−5 8.44 × 10−4 8.16 × 10−3
    最大值 1.91 × 10−3 1.37 × 10−2 2.03 × 10−7 3.75 × 10−7 7.27 × 10−5 1.27 × 10−4 1.98 × 10−3 1.38 × 10−2
    均值  1.38 × 10−3 9.89 × 10−3 1.47 × 10−7 2.71 × 10−7 5.26 × 10−5 9.23 × 10−5 1.44 × 10−3 9.98 × 10−3
    Hg 最小值 2.87 × 10−4 2.05 × 10−3 1.07 × 10−7 1.98 × 10−7 4.67 × 10−5 8.20 × 10−5 3.51 × 10−4 2.26 × 10−3
    最大值 1.86 × 10−3 1.33 × 10−2 6.93 × 10−7 1.28 × 10−6 3.02 × 10−4 5.31 × 10−4 2.19 × 10−3 1.40 × 10−2
    均值  9.77 × 10−4 6.98 × 10−3 3.24 × 10−7 6.00 × 10−7 1.42 × 10−4 2.48 × 10−4 1.15 × 10−3 7.42 × 10−3
    Ni 最小值 1.91 × 10−3 1.36 × 10−2 1.97 × 10−7 3.65 × 10−7 8.05 × 10−5 1.41 × 10−4 1.99 × 10−3 2.02 × 10−2
    最大值 4.77 × 10−3 3.41 × 10−2 4.94 × 10−7 9.13 × 10−7 2.01 × 10−4 3.54 × 10−4 4.97 × 10−3 3.44 × 10−2
    均值  2.71 × 10−3 1.93 × 10−2 2.80 × 10−7 5.17 × 10−7 1.14 × 10−4 2.00 × 10−4 2.82 × 10−3 1.95 × 10−2
    Pb 最小值 6.98 × 10−3 4.99 × 10−2 7.40 × 10−7 1.37 × 10−6 5.30 × 10−4 9.31 × 10−4 7.60 × 10−3 6.17 × 10−2
    最大值 1.45 × 10−2 1.04 × 10−1 1.54 × 10−6 2.84 × 10−6 1.10 × 10−3 1.94 × 10−3 1.58 × 10−2 1.07 × 10−1
    均值  1.00 × 10−2 7.15 × 10−2 1.06 × 10−6 1.96 × 10−6 7.60 × 10−4 1.33 × 10−3 1.09 × 10−2 7.36 × 10−2
    Zn 最小值 2.94 × 10−4 2.10 × 10−3 3.13 × 10−8 2.16 × 10−7 1.67 × 10−5 2.94 × 10−5 3.10 × 10−4 2.58 × 10−3
    最大值 5.83 × 10−4 4.16 × 10−3 6.21 × 10−8 4.28 × 10−7 3.32 × 10−5 5.83 × 10−5 6.16 × 10−4 4.22 × 10−3
    均值  4.53 × 10−4 3.24 × 10−3 4.83 × 10−8 3.33 × 10−7 2.58 × 10−5 4.53 × 10−5 4.79 × 10−4 3.28 × 10−3
    下载: 导出CSV

    表  5   重金属致癌风险指数值统计

    Table  5   Statistics of carcinogenic risk index of heavy metals

    手口摄入致癌风险商
    CRingestion
    呼吸吸入致癌风险商
    CRinhalation
    皮肤接触致癌风险商
    CRdermal
    致癌风险指数
    TCR
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    成人
    Adults
    儿童
    Child
    As 最小值 2.61 × 10−5 1.86 × 10−4 2.80 × 10−8 5.17 × 10−8 2.81 × 10−7 5.22 × 10−7 2.64 × 10−5 1.87 × 10−4
    最大值 5.37 × 10−5 3.84 × 10−4 5.76 × 10−8 1.06 × 10−7 5.79 × 10−7 1.07 × 10−6 5.43 × 10−5 3.85 × 10−4
    均值  4.12 × 10−5 2.94 × 10−4 4.42 × 10−8 8.17 × 10−8 4.45 × 10−7 8.24 × 10−7 4.17 × 10−5 2.95 × 10−4
    Cd 最小值 1.17 × 10−6 8.35 × 10−6 1.29 × 10−10 2.38 × 10−10 1.25 × 10−6 8.90 × 10−6
    最大值 2.68 × 10−6 1.91 × 10−5 2.95 × 10−10 5.45 × 10−10 2.38 × 10−6 1.70 × 10−5
    均值  1.89 × 10−6 1.35 × 10−5 2.08 × 10−10 3.85 × 10−10 1.89 × 10−6 1.35 × 10−5
    Cr 最小值 3.71 × 10−7 6.86 × 10−7 3.71 × 10−7 6.86 × 10−7
    最大值 6.53 × 10−7 1.21 × 10−6 6.53 × 10−7 1.21 × 10−6
    均值  4.77 × 10−7 8.81 × 10−7 4.77 × 10−7 8.81 × 10−7
    Ni 最小值 3.42 × 10−9 6.31 × 10−9 3.42 × 10−9 6.31 × 10−9
    最大值 8.55 × 10−9 1.58 × 10−8 8.55 × 10−9 1.58 × 10−8
    均值  4.85 × 10−9 8.95 × 10−9 4.85 × 10−9 8.95 × 10−9
    Pb 最小值 1.09 × 10−10 2.02 × 10−10 1.09 × 10−10 2.02 × 10−10
    最大值 2.28 × 10-10 4.21 × 10−10 2.28 × 10−10 4.21 × 10−10
    均值  1.57 × 10−10 2.90 × 10−10 1.57 × 10−10 2.90 × 10−10
      注:−表示无相关数据
    下载: 导出CSV
  • [1]

    Hu Y, Cheng H, Tao S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environment International, 2016, 92-93: 515 − 532. doi: 10.1016/j.envint.2016.04.042

    [2]

    Petr S, Šarka P, Tomas V. Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.)[J]. Environmental and Experimental Botany, 2011, 74: 289 − 295. doi: 10.1016/j.envexpbot.2011.06.011

    [3] 纪淑娟, 王俊伟, 王颜红, 等. 土壤有效态Pb和Cd与大蒜吸收Pb和Cd的关系[J]. 沈阳农业大学学报, 2008, (2): 237 − 239. doi: 10.3969/j.issn.1000-1700.2008.02.025
    [4]

    Ji Y, Wu P, Zhang J, et al. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: A case study along the Le'an river[J]. Chemosphere, 2018, 199: 361 − 371. doi: 10.1016/j.chemosphere.2018.02.045

    [5]

    Kim B, Angeli J, Ferreia P, et al. Critical evaluation of different methods to calculate the geoaccumulation index for environmental studies: A new approach for Baixada Santista-Southeastern Brazil[J]. Marine Pollution Bulletin, 2018, 127: 548 − 552. doi: 10.1016/j.marpolbul.2017.12.049

    [6] 黄华斌, 林承奇, 于瑞莲, 等. 安溪铁观音茶园土壤重金属分布及污染评价[J]. 环境化学, 2018, 37(5): 994 − 1001.
    [7]

    Abdul Q, Zulfiqar A, Zeeshan A, et al. Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration[J]. Sustainable Cities and Society, 2020, 53: 1 − 9.

    [8]

    Haknson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975 − 1001. doi: 10.1016/0043-1354(80)90143-8

    [9]

    Dong W, Zhang Y, Quan X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China[J]. Chemosphere, 2020, 242: 1 − 13.

    [10] 赵 杰, 罗志军, 赵弯弯, 等. 基于改进物元可拓模型的鄱阳湖区耕地土壤重金属污染评价[J]. 农业环境科学学报, 2019, 38(3): 521 − 533. doi: 10.11654/jaes.2018-0732
    [11] 薄录吉, 王德建, 颜 晓, 等. 底泥环保资源化利用及其风险评价[J]. 土壤通报, 2013, 44(4): 1017 − 1024.
    [12] 刘 苹, 赵海军, 刘兆辉, 等. 山东省露地蔬菜产地土壤重金属含量的环境质量分析与评价[J]. 农业环境科学学报, 2010, 29(6): 1130 − 1136.
    [13]

    Bo L, Wang D, Li T, et al. Accumulation and risk assessment of heavy metals in water, sediments, and aquatic organisms in rural rivers in the Taihu Lake region, China.[J]. Environmental science and pollution research international, 2015, 22(9): 6721 − 6731. doi: 10.1007/s11356-014-3798-3

    [14] 中华人民共和国农业部. 农田土壤环境质量监测技术规范: NY/T 395—2012[S]. 北京: 中国农业出版社, 2012.
    [15] 国家环境保护总局. 食用农产品产地环境质量评价标准: HJ332—2006[S]. 北京: 中国环境科学出版社, 2007.
    [16]

    USEPA. Exposure factors handbook (Final report 1997)[M]. Washington, DC: Office of Solid Waste and Emergency Response. 1997.

    [17] 中华人民共和国环境保护部. 污染场地风险评估技术导则(HJ 25.3—2014)[S]. 北京: 中国环境科学出版社, 2014.
    [18] 王洋洋, 李方方, 王笑阳, 等. 铅锌冶炼厂周边农田土壤重金属污染空间分布特征及风险评估[J]. 环境科学, 2019, 40(1): 437 − 444.
    [19]

    USEPA. Supplemental guidance for developing soil screening levels for Superfund sites[M]. Washington, DC: Office of Solid Waste and Emergency Response. 2002.

    [20] 谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价[J]. 环境化学, 2017, 36(1): 62 − 71. doi: 10.7524/j.issn.0254-6108.2017.01.2016051705
    [21] 刘海伟, 宗 浩, 王海云, 等. 临沂植烟土壤重金属空间分布特征与生态健康风险评价[J]. 中国烟草科学, 2018, 39(4): 41 − 49.
    [22] 陈雅丽, 翁莉萍, 马 杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219 − 2238. doi: 10.11654/jaes.2018-1449
    [23]

    Hao P, Chen Y, Weng L, et al. Comparisons of heavy metal input inventory in agricultural soils in north and south China: A review[J]. Science of the Total Environment, 2019, 660: 776 − 786. doi: 10.1016/j.scitotenv.2019.01.066

    [24] 黄绍文, 唐继伟, 李春花. 不同栽培方式菜田耕层土壤重金属状况[J]. 植物营养与肥料学报, 2016, 22(3): 707 − 718. doi: 10.11674/zwyf.14590
    [25]

    Salwinder S, Jasdinder S, Parminder K, et al. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review[J]. Environmental Science and Pollution Research, 2020, 27(2): 1319 − 1333. doi: 10.1007/s11356-019-06967-1

    [26] 蒙永辉, 王集宁, 夏 青, 等. 典型铝塑厂周边土壤重金属分布特征与健康风险评价[J]. 中国环境监测, 2019, 35(5): 69 − 78.
    [27] 谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤-农作物重金属空间变异特征与健康风险评价[J]. 农业环境科学学报, 2019, 38(3): 544 − 554. doi: 10.11654/jaes.2018-1315
    [28]

    Sharareh D, Farid M, Behnam K, et al. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran[J]. Ecotoxicology and Environmental Safety, 2017, 136: 92 − 103. doi: 10.1016/j.ecoenv.2016.10.037

    [29]

    Hu W, Chen Y, Huang B, et al. Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China[J]. Human and Ecological Risk Assessment, 2014, 20(5): 1264 − 1280. doi: 10.1080/10807039.2013.831267

    [30] 范明毅, 杨 皓, 黄先飞, 等. 典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J]. 中国环境科学, 2016, 36(8): 2425 − 2436. doi: 10.3969/j.issn.1000-6923.2016.08.024
    [31]

    Li Z, Ma Z, Van D, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468-469: 843 − 853. doi: 10.1016/j.scitotenv.2013.08.090

    [32] 江 南, 平令文, 季晓慧, 等. 典型北方菜田常用肥料中重金属含量分析及污染风险评价[J]. 农业环境科学学报, 2020, 39(3): 521 − 529. doi: 10.11654/jaes.2019-1154
    [33] 沃惜慧, 杨丽娟, 曹庭悦, 等. 长期定位施肥下设施土壤重金属积累及生态风险的研究[J]. 农业环境科学学报, 2019, 38(10): 2319 − 2327. doi: 10.11654/jaes.2019-0293
    [34] 赵庆令, 李清彩, 谢江坤, 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015, 34(1): 129 − 137.
图(5)  /  表(5)
计量
  • 文章访问数:  496
  • HTML全文浏览量:  225
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-11-14
  • 发布日期:  2021-04-07

目录

    /

    返回文章
    返回
    Baidu
    map