基于文献计量的根际激发效应研究进展与趋势

姚忠凯, 刘丹, 阴黎明, 淳心, 林俊杰

姚忠凯, 刘 丹, 阴黎明, 淳 心, 林俊杰. 基于文献计量的根际激发效应研究进展与趋势[J]. 土壤通报, 2024, 55(3): 876 − 885. DOI: 10.19336/j.cnki.trtb.2022070201
引用本文: 姚忠凯, 刘 丹, 阴黎明, 淳 心, 林俊杰. 基于文献计量的根际激发效应研究进展与趋势[J]. 土壤通报, 2024, 55(3): 876 − 885. DOI: 10.19336/j.cnki.trtb.2022070201
YAO Zhong-kai, LIU Dan, YIN Li-ming, CHUN Xin, LIN Jun-jie. Research Progress and Trend Analysis of Rhizosphere Priming Effect Based on Bibliometrics Method[J]. Chinese Journal of Soil Science, 2024, 55(3): 876 − 885. DOI: 10.19336/j.cnki.trtb.2022070201
Citation: YAO Zhong-kai, LIU Dan, YIN Li-ming, CHUN Xin, LIN Jun-jie. Research Progress and Trend Analysis of Rhizosphere Priming Effect Based on Bibliometrics Method[J]. Chinese Journal of Soil Science, 2024, 55(3): 876 − 885. DOI: 10.19336/j.cnki.trtb.2022070201

基于文献计量的根际激发效应研究进展与趋势

基金项目: 重庆市自然科学基金(cstc2020jcyj-msxmX0095)、重庆市教育委员会项目(KJZD-K202001203;KJZD-K202003501;CXQTP19037)和重庆市研究生科研创新项目(YJSKY22025)资助
详细信息
    作者简介:

    姚忠凯(1997—),男,山东泰安人,硕士研究生,主要从事根际激发效应研究。E-mail: yaozk0538@163.com

    通讯作者:

    林俊杰: E-mail: junjielin@sanxiau.edu.cn

  • 中图分类号: S153

Research Progress and Trend Analysis of Rhizosphere Priming Effect Based on Bibliometrics Method

  • 摘要: 为了解根际激发效应(RPE)的研究进展和趋势,以Web of Science核心合集数据库中216篇RPE的研究论文为数据源,通过CiteSpace、VOS viewer对发文数量、平均/总被引频次及国家、机构、作者等进行了分析。结果表明:RPE研究大致可分为三个阶段:初始期(1984 ~ 1995年)、稳定发展期(1996 ~ 2014年)和快速增长期(2015 ~ 2022年)。美国总发文第一且中介中心性最高,国际影响力最大;中国在2018年后年均发文攀升至第一,在国际影响力方面次于德国,排在第三位。国际上主要以Cheng W、Kuzyakov Y为代表的核心作者群;就研究机构而言,中国科学院发文数量最多。研究热点主要集中在RPE的量化方法、影响因素及调控机制,且大多是采用植物幼苗和在室内盆栽条件下完成的。因此,亟需将室内研究拓展至野外原位条件,综合考虑全球气候变化的影响,改进CO2同位素示踪技术和捕获方法,加强成年树种RPE的种间差异变幅研究,优化Earth-System模型参数,进而准确估算陆地生态系统碳循环对气候变化的响应。

     

    Abstract: In order to understand the research progress and trend of rhizosphere priming effect(RPE), 216 research papers on RPE in Web of Science core collection database were used as data sources. The number of published papers, total/average citation frequency, countries, institutions and authors were analyzed by CiteSpace and VOS viewer. The results showed that the research on RPE could be divided into three stages: the preliminary stage (1984-1995), stable development stage (1996-2014) and rapid growth stage (2015-2022). The USA has the largest total number of publications, the highest intermediary centrality and the largest international influence. The average annual number of publications of China has climbed to the first after 2018, but ranking the third in the international influence by following Germany. At present, Cheng W and Kuzyakov Y are the main core authors. Chinese Academy of Sciences has the largest number of publications. The research hotspots mainly focus on the quantitative methods, influencing factors and regulatory mechanisms of RPE, and most of them are completed by plant seedlings and indoor potted conditions. Therefore, it is urgent to expand the indoor research to the in-situ field conditions, comprehensively consider the impact of global climate change, improve the CO2 isotope tracing technique and capture method, strengthen the research on the variation of RPE among adult tree species, optimize the parameters of Earth-System model, and then accurately estimate the response of terrestrial ecosystem carbon cycle to climate change.

     

  • 图  1   发文及被引频次

    Figure  1.   Publications and citation

    图  2   排名前10的国家总发文量与被引频次(a)及排名前5的国家年均发文量(b)

    Figure  2.   The total publications and citations of the top 10 countries (a) and the annualpublications by the top 5 countries (b)

    图  3   国家合作图

    Figure  3.   Cooperation among major countries

    图  4   基于VOS viewer分析RPE论文的作者合作图

    Figure  4.   Network visualization of authors cooperation based on VOS viewer

    图  5   关键词网络

    Figure  5.   Network visualization of keywords

    图  6   RPE的影响因素

    Figure  6.   Influencing factors of rhizosphere priming effect

    表  1   发文量前5的机构及其他信息

    Table  1   Top 5 most published institutions

    序号
    Number
    机构
    Institution
    发文量(篇)
    Number of papers
    总被引频次(次)
    Total cited times
    平均被引频次(次)
    Average cited times
    H指数
    H-index
    1 中国科学院 45 1150 25.56 15
    2 加利福尼亚大学圣克鲁兹分校 40 2773 69.33 22
    3 悉尼大学 20 570 28.5 11
    4 哥廷根大学 19 1507 79.32 14
    5 美国农业部 12 763 63.58 10
    下载: 导出CSV

    表  2   发文量前5的作者及其他信息

    Table  2   Top 5 most published researchers on rhizosphere priming effect

    序号
    Number
    作者
    Author
    所属机构
    Institution
    发文数量(篇)
    Papers
    总被引频次(次)
    Total cited times
    平均被引频次(次)
    Average cited times
    H指数
    H-index
    1 Cheng 美国加州大学圣克鲁兹分校 42 2875 68.45 24
    2 Kuzyakov 德国哥廷根大学 26 5223 200.88 21
    3 Dijkstra 澳大利亚悉尼大学 23 1051 45.7 14
    4 Wang 中国科学院沈阳应用生态研究所 11 141 12.82 6
    5 Phillips 美国印第安纳大学 10 1716 171.6 8
    下载: 导出CSV

    表  3   碳同位素技术的方法比较

    Table  3   Comparison of carbon isotopic techniques

    方法
    Method
    原理
    Principle
    优点
    Advantage
    缺点
    Limitation
    参考文献
    Reference
    13C/14C连续标记法 可控密闭标记室供给一定浓度13CO214CO2,通过区分植物和土壤来源碳,量化植物光合碳对地下各组分碳的输入。 误差小,丰度高 辐射危害、测量仪器高标、实验场所限制 [52-55]
    13C/14C脉冲标记法 可控密闭标记室单次或重复加入标记碳,标记植物地上部后移出,通过光合13C/14C分配乘以植物生物碳的生长率来定量光合碳对地下部各个组分的输入。 灵敏度高、扰动小 标记均匀度有限,需多次标记,在野外难以实现 [49,55-57]
    天然13C同位素示踪法 利用不同植物光合途径对12CO2 vs 13CO2的同位素分馏,选用长期C3-C4植被转变土壤,或δ13C差异较大的土壤和植物进行培养(一般应大于10‰),借助二源模型区分根呼吸和土壤呼吸。 无辐射,工作条件限制小,费用低,适合野外原位实验 植物和土壤之间δ13C差值有限 [33,40,59,60]
    下载: 导出CSV

    表  4   根际激发效应经典假说

    Table  4   Classical hypothesis of rhizosphere priming effect

    调控机制
    Mechanism
    前提条件
    Preconditions
    核心内容
    Content
    方向
    Direction
    参考文献
    Reference
    养分竞争假说 氮是植物和微生物生长最大的限制元素,矿质氮素供应有限 根系与微生物竞争可利用氮,时间尺度一定程度上决定竞争的结果 + − [43,61-65]
    氮挖掘假说 根系大量利用氮素,导致微生物可利用氮受限 低氮有效性促进微生物增加胞外酶的分泌,加速更惰性的土壤有机质分解以获取氮素 + [18,67,68]
    底物偏好利用假说 植物根系来源的物质比土壤有机质有更大范围的碳氮比,且植物源碳可利用性较高
    矿质营养充足时,土壤微生物倾向于优先利用根系碳源,根际土壤有机质矿化速率下降,矿质营养供应受限时,土壤微生物偏好地利用土壤有机质,根际土壤有机质矿化速率上升 + − [69,70]
    微生物活化假说 土壤微生物处于活跃或休眠状态 根际沉积物激活休眠状态的微生物,显著增加休眠土壤微生物数量活性,加快土壤有机质矿化速率 + [67,71,72]
    下载: 导出CSV
  • [1]

    Wieder W R, Bonan G B, Allison S D. Global soil carbon projections are improved by modelling microbial processes[J]. Nature Climate Change, 2013, 3(10): 909 − 912. doi: 10.1038/nclimate1951

    [2]

    Hu Y, Zeng D, Ma X, et al. Root rather than leaf litter input drives soil carbon sequestration after afforestation on a marginal cropland[J]. Forest Ecology and Management, 2016, 362: 38 − 45. doi: 10.1016/j.foreco.2015.11.048

    [3]

    Hopkins F, Gonzalez-Meler M A, Flower C E, et al. Ecosystem-level controls on root-rhizosphere respiration[J]. New Phytologist, 2013, 199(2): 339 − 351. doi: 10.1111/nph.12271

    [4]

    Friedlingstein P, Jones M W, O’sullivan M, et al. Global carbon budget 2019[J]. Earth System Science Data, 2019, 11(4): 1783 − 1838. doi: 10.5194/essd-11-1783-2019

    [5]

    Finzi A C, Abramoff R Z, Spiller K S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 2015, 21(5): 2082 − 2094. doi: 10.1111/gcb.12816

    [6]

    Weixin C, Coleman D C, Carroll C R, et al. In situ measurement of root respiration and soluble C concentrations in the rhizosphere[J]. Soil Biology and Biochemistry, 1993, 25(9): 1189 − 1196. doi: 10.1016/0038-0717(93)90214-V

    [7]

    Foster R C. Microenvironments of soil microorganisms[J]. Biology and Fertility of Soils, 1988, 6(3): 189 − 203.

    [8]

    Cheng W, Parton W J, Gonzalez-Meler M A, et al. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist, 2014, 201(1): 31 − 44. doi: 10.1111/nph.12440

    [9]

    Kuzyakov Y. Review: Factors affecting rhizosphere priming effects[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(4): 382 − 396. doi: 10.1002/1522-2624(200208)165:4<382::AID-JPLN382>3.0.CO;2-#

    [10]

    Phillips R P, Meier I C, Bernhardt E S, et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2[J]. Ecology Letters, 2012, 15(9): 1042 − 1049. doi: 10.1111/j.1461-0248.2012.01827.x

    [11]

    Yin L, Xiao W, Dijkstra F A, et al. Linking absorptive roots and their functional traits with rhizosphere priming of tree species[J]. Soil Biology and Biochemistry, 2020, 150: 107997. doi: 10.1016/j.soilbio.2020.107997

    [12]

    Yin L, Dijkstra F A, Phillips R P, et al. Arbuscular mycorrhizal trees cause a higher carbon to nitrogen ratio of soil organic matter decomposition via rhizosphere priming than ectomycorrhizal trees[J]. Soil Biology and Biochemistry, 2021, 157: 108246. doi: 10.1016/j.soilbio.2021.108246

    [13]

    Li J, Zhou M, Alaei S, et al. Rhizosphere priming effects differ between Norway spruce (Picea abies) and Scots pine seedlings cultivated under two levels of light intensity[J]. Soil Biology and Biochemistry, 2020, 145: 107788. doi: 10.1016/j.soilbio.2020.107788

    [14]

    Chen P, Mo C, He C, et al. Shift of microbial turnover time and metabolic efficiency strongly regulates rhizosphere priming effect under nitrogen fertilization in paddy soil[J]. Science of the Total Environment, 2021, 800: 149590. doi: 10.1016/j.scitotenv.2021.149590

    [15]

    Zhang X W, Han X Z, Yu W T, et al. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years[J]. Plos One, 2017, 12(9): 19.

    [16]

    Huang J, Liu W, Pan S, et al. Divergent contributions of living roots to turnover of different soil organic carbon pools and their links to plant traits[J]. Functional Ecology, 2021, 35(12): 2821 − 2830. doi: 10.1111/1365-2435.13934

    [17]

    Blagodatskaya Е, Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review[J]. Biology and Fertility of Soils, 2008, 45(2): 115 − 131. doi: 10.1007/s00374-008-0334-y

    [18]

    Burns R G, Deforest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216 − 234. doi: 10.1016/j.soilbio.2012.11.009

    [19]

    Zhu B, Cheng W. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition[J]. Global Change Biology, 2011, 17(6): 2172 − 2183. doi: 10.1111/j.1365-2486.2010.02354.x

    [20]

    Zhu B, Cheng W. Impacts of drying–wetting cycles on rhizosphere respiration and soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2013, 63: 89 − 96. doi: 10.1016/j.soilbio.2013.03.027

    [21]

    Chang Q, Qu G, Xu W, et al. Light availability controls rhizosphere priming effect of temperate forest trees[J]. Soil Biology and Biochemistry, 2020, 148: 107895. doi: 10.1016/j.soilbio.2020.107895

    [22]

    Lu J, Dijkstra F A, Wang H, et al. Rhizosphere priming effect of four non-woody perennials after leaf senescence and before shoot regrowth[J]. Geoderma, 2022, 426: 116091. doi: 10.1016/j.geoderma.2022.116091

    [23]

    Jeewani P H, Gunina A, Tao L, et al. Rusty sink of rhizodeposits and associated keystone microbiomes[J]. Soil Biology and Biochemistry, 2020, 147: 107840. doi: 10.1016/j.soilbio.2020.107840

    [24]

    Wang X, Dijkstra F A, Yin L, et al. Rhizosphere priming effects in soil aggregates with different size classes[J]. Ecosphere, 2020, 11(2): e03027.

    [25]

    Dijkstra F A, Cheng W. Moisture modulates rhizosphere effects on C decomposition in two different soil types[J]. Soil Biology and Biochemistry, 2007, 39(9): 2264 − 2274. doi: 10.1016/j.soilbio.2007.03.026

    [26]

    Cheng W. Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C–N budgets[J]. Soil Biology and Biochemistry, 2009, 41(9): 1795 − 1801. doi: 10.1016/j.soilbio.2008.04.018

    [27]

    Kuzyakov Y. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9): 1363 − 1371. doi: 10.1016/j.soilbio.2010.04.003

    [28]

    Huo C, Luo Y, Cheng W. Rhizosphere priming effect: A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 111: 78 − 84. doi: 10.1016/j.soilbio.2017.04.003

    [29]

    Xu D, Wang Y-L, Wang K-T, et al. A Scientometrics analysis and visualization of depressive disorder[J]. Current Neuropharmacology, 2021, 19(6): 766 − 786. doi: 10.2174/1570159X18666200905151333

    [30]

    Price D D S. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27(5): 292 − 306. doi: 10.1002/asi.4630270505

    [31] 李皓芯, 任 婧, 李 娜, 等. 基于文献计量的国内外生态补偿研究热点与案例分析[J]. 生态科学, 2022, 41(4): 171 − 180. doi: 10.14108/j.cnki.1008-8873.2022.04.020
    [32] 陈 悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242 − 253. doi: 10.3969/j.issn.1003-2053.2015.02.009
    [33]

    Cheng W. Measurement of rhizosphere respiration and organic matter decomposition using natural 13C[J]. Plant and Soil, 1996, 183(2): 263 − 268. doi: 10.1007/BF00011441

    [34]

    Cardon Z G. Influence of rhizodeposition under elevated CO2 on plant nutrition and soil organic matter[J]. Plant and Soil, 1995, 187(2): 277 − 288. doi: 10.1007/BF00017093

    [35]

    Gorissen A, Kuikman P J, Van Ginkel J H, et al. ESPAS — An advanced phytotron for measuring carbon dynamics in a whole plant-soil system[J]. Plant and Soil, 1996, 179(1): 81 − 87. doi: 10.1007/BF00011645

    [36]

    Yin L, Corneo P E, Richter A, et al. Variation in rhizosphere priming and microbial growth and carbon use efficiency caused by wheat genotypes and temperatures[J]. Soil Biology and Biochemistry, 2019, 134: 54 − 61. doi: 10.1016/j.soilbio.2019.03.019

    [37]

    Jiang Z, Liu Y, Yang J, et al. Effects of nitrogen fertilization on the rhizosphere priming[J]. Plant and Soil, 2021, 462(1): 489 − 503.

    [38]

    Mo C, Jiang Z, Chen P, et al. Microbial metabolic efficiency functions as a mediator to regulate rhizosphere priming effects[J]. Science of the Total Environment, 2021, 759: 143488. doi: 10.1016/j.scitotenv.2020.143488

    [39]

    Cheng W. Rhizosphere feedbacks in elevated CO2[J]. Tree Physiology, 1999, 19(4-5): 313 − 320. doi: 10.1093/treephys/19.4-5.313

    [40]

    Kumar A, Kuzyakov Y, Pausch J. Maize rhizosphere priming: field estimates using 13C natural abundance[J]. Plant and Soil, 2016, 409(1): 87 − 97.

    [41]

    Pausch J, Loeppmann S, Kühnel A, et al. Rhizosphere priming of barley with and without root hairs[J]. Soil Biology and Biochemistry, 2016, 100: 74 − 82. doi: 10.1016/j.soilbio.2016.05.009

    [42]

    Jeewani P H, Luo Y, Yu G, et al. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions[J]. Soil Biology and Biochemistry, 2021, 162: 108417. doi: 10.1016/j.soilbio.2021.108417

    [43]

    Dijkstra F, Carrillo Y, Pendall E, et al. Rhizosphere priming: a nutrient perspective[J]. Frontiers in Microbiology, 2013: 4.

    [44]

    Carrillo Y, Dijkstra F A, Lecain D, et al. Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2[J]. Biogeochemistry, 2016, 127(1): 45 − 55. doi: 10.1007/s10533-015-0159-3

    [45] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298 − 310.
    [46]

    Xu Q, Wang X, Tang C. The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin[J]. Plant and Soil, 2018, 425(1): 375 − 387.

    [47]

    Wang X, Whalley W R, Miller A J, et al. Sustainable cropping requires adaptation to a heterogeneous rhizosphere[J]. Trends in Plant Science, 2020, 25(12): 1194 − 1202. doi: 10.1016/j.tplants.2020.07.006

    [48]

    Eviner V T, Chapin Iii F S. Functional aatrix: A conceptual framework for predicting multiple plant effects on ecosystem processes[J]. Annual Review of Ecology, Evolution, and Systematics, 2003, 34(1): 455 − 485. doi: 10.1146/annurev.ecolsys.34.011802.132342

    [49]

    Kuzyakov Y, Schneckenberger K. Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation[J]. Archives of Agronomy and Soil Science, 2004, 50: 115 − 132. doi: 10.1080/03650340310001627658

    [50]

    Pausch J, Kuzyakov Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1): 1 − 12. doi: 10.1111/gcb.13850

    [51]

    Sun Z, Meng F, Zhu B. Influencing factors and partitioning methods of carbonate contribution to CO2 emissions from calcareous soils [J]. Soil Ecology Letters, 2022.

    [52]

    Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: Critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry, 2013, 67: 192 − 211. doi: 10.1016/j.soilbio.2013.08.024

    [53]

    Ge T, Liu C, Yuan H, et al. Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen[J]. Plant and Soil, 2015, 392(1): 17 − 25.

    [54]

    Zhu B, Gutknecht J L M, Herman D J, et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization[J]. Soil Biology and Biochemistry, 2014, 76: 183 − 192. doi: 10.1016/j.soilbio.2014.04.033

    [55]

    Sun Z, Chen Q, Han X, et al. Allocation of photosynthesized carbon in an intensively farmed winter wheat–soil system as revealed by 14CO2 pulse labelling[J]. Scientific Reports, 2018, 8(1): 3160. doi: 10.1038/s41598-018-21547-y

    [56]

    Mo F, Zhang Y Y, Li T, et al. Fate of photosynthesized carbon as regulated by long–term tillage management in a dryland wheat cropping system[J]. Soil Biology and Biochemistry, 2019, 138: 107581. doi: 10.1016/j.soilbio.2019.107581

    [57]

    Sun Z, Wu S, Zhang Y, et al. Effects of nitrogen fertilization on pot-grown wheat photosynthate partitioning within intensively farmed soil determined by 13C pulse-labeling[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(6): 896 − 907. doi: 10.1002/jpln.201800603

    [58]

    Pang R, Xu X, Tian Y, et al. In-situ 13CO2 labeling to trace carbon fluxes in plant-soil-microorganism systems: Review and methodological guideline[J]. Rhizosphere, 2021, 20: 100441. doi: 10.1016/j.rhisph.2021.100441

    [59]

    Cheng W, Johnson D W, Fu S. Rhizosphere effects on decomposition[J]. Soil Science Society of America Journal, 2003, 67(5): 1418 − 1427. doi: 10.2136/sssaj2003.1418

    [60]

    Wang X, Tang C, Severi J, et al. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation[J]. New Phytologist, 2016, 211(3): 864 − 873. doi: 10.1111/nph.13966

    [61]

    Jingguo W, Bakken L R. Competition for nitrogen during decomposition of plant residues in soil: Effect of spatial placement of N-rich and N-poor plant residues[J]. Soil Biology and Biochemistry, 1997, 29(2): 153 − 162. doi: 10.1016/S0038-0717(96)00291-X

    [62]

    Rosswall T. Microbiological regulation of the biogeochemical nitrogen cycle[J]. Plant and Soil, 1982, 67(1): 15 − 34.

    [63]

    Jackson L E, Schimel J P, Firestone M K. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland[J]. Soil Biology and Biochemistry, 1989, 21(3): 409 − 415. doi: 10.1016/0038-0717(89)90152-1

    [64]

    Kuzyakov Y, Xu X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance[J]. New Phytologist, 2013, 198(3): 656 − 669. doi: 10.1111/nph.12235

    [65]

    Kuzyakov Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods[J]. Soil Biology and Biochemistry, 2002, 34(11): 1621 − 1631. doi: 10.1016/S0038-0717(02)00146-3

    [66]

    Fontaine S, Henault C, Aamor A, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry, 2011, 43(1): 86 − 96. doi: 10.1016/j.soilbio.2010.09.017

    [67]

    Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837 − 843. doi: 10.1016/S0038-0717(03)00123-8

    [68]

    Bengtson P, Barker J, Grayston S J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects[J]. Ecology and Evolution, 2012, 2(8): 1843 − 1852. doi: 10.1002/ece3.311

    [69]

    Merckx R, Dijkstra A, Den Hartog A, et al. Production of root-derived material and associated microbial growth in soil at different nutrient levels[J]. Biology and Fertility of Soils, 1987, 5(2): 126 − 132. doi: 10.1007/BF00257647

    [70]

    Van Veen J A, Merckx R, Van De Geijn S C. Plant- and soil related controls of the flow of carbon from roots through the soil microbial biomass[J]. Plant and Soil, 1989, 115(2): 179 − 188. doi: 10.1007/BF02202586

    [71]

    De Nobili M, Contin M, Mondini C, et al. Soil microbial biomass is triggered into activity by trace amounts of substrate[J]. Soil Biology and Biochemistry, 2001, 33(9): 1163 − 1170. doi: 10.1016/S0038-0717(01)00020-7

    [72]

    Toberman H, Chen C, Xu Z. Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest[J]. Soil Research, 2011, 49(7): 652 − 660. doi: 10.1071/SR11202

    [73]

    Zhu B, Cheng W. Nodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean[J]. Soil Biology and Biochemistry, 2012, 51: 56 − 65. doi: 10.1016/j.soilbio.2012.04.016

    [74]

    Xu Q, Wang X, Tang C. Rhizosphere priming of two near-isogenic wheat lines varying in citrate efflux under different levels of phosphorus supply[J]. Annals of Botany, 2019, 124(6): 1033 − 1042. doi: 10.1093/aob/mcz082

    [75]

    Lu J, Dijkstra F A, Wang P, et al. Roots of non-woody perennials accelerated long-term soil organic matter decomposition through biological and physical mechanisms[J]. Soil Biology and Biochemistry, 2019, 134: 42 − 53. doi: 10.1016/j.soilbio.2019.03.015

图(6)  /  表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  9
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-10-25
  • 录用日期:  2022-11-12
  • 刊出日期:  2024-06-04

目录

    /

    返回文章
    返回
    Baidu
    map